
Author: Matt Hales Advisor: Professor Zhang

GraphLily - Accelerating Graph Linear 
Algebra on HBM-Equipped FPGAs 

Sparse Processing for Graphs
Breadth-first Search (BFS)

nRecommend 2-hop neighbors as new friends 

Social Network Graph

Single-source Shortest Path (SSSP)

Road Map
nNavigation

PageRank

nUsed in search engines

Website Link 
Graph

Sparse Processing Challenges

58%27%

15%

memory stalls

other stalls

no stalls

Profiling of 
PageRank on [1]

Memory bandwidth bound

Irregular compute pattern

6 neighbors
3 neighbors

n The operational intensity (OI), operations per unit 
memory traffic, is low for sparse workloads.

n The vertex degree varies 
dramatically

nVertices may share neighbors

High-bandwidth Memory (HBM)
n HBM provides multiple memory 

channels that can be accessed 
concurrently, bringing the potential to 
boost the performance of sparse 
workloads.

Custom 
Accelerator

HBM

PageRank 
SpMV
BFS…

Rank Website
1 www.google.com
2 www.youtube.com
3 www.facebook.com

Format-architecture Co-design
Traditional CSR format

Our Approach
Near-HBM hardware acceleration
n Co-design the sparse format and the accelerator 

architecture to maximize HBM bandwidth utilization
n Build dynamically executing pipelines to handle the 

irregular computation
n Prototype an GraphBLAS-compatible overlay on FPGA for 

programmability

HBM-friendly sparse format

Non-zero a12 a13 a21 a24 a34 a41
Column index 2 3 1 4 4 1

Row pointer p1 p2 p3 p4

HBM Channel 1

HBM Channel 2

Matrix

PE 1*
PE 2*
PE 1
PE 2

a12 a13
a21 a24

a34
a41

n Contiguous row storage → contention
n Indirect addressing → non-streaming

Non-zero a12 a13 à a34 à a21 a24 à a41
Column index 2 3 4 1 4 1

HBM Channel 1
HBM Channel 2

n Cyclic row storage → contention-free
n Next-row markers → streaming access

Matrix

PE 1*
PE 2*
PE 1
PE 2

a12a13
a21 a24

a34
a41 à: Next-row marker

* According to [2], cyclically assigning rows to PEs is 
essential for load balancing.

Abstract
The purpose of GraphLily is to accelerate sparse matrix linear algebra computations on a Xilinix Field Programmable Gate Array (FPGA) by leveraging the 

benefits of High Bandwidth Memory (HBM). Most matrix multiplications can have long execution times due to their O(N2) complexity. To address this, we convert 
between sparse matrices, matrices filled with many zeroes, and dense matrices, matrices where all zeroes have been removed.

While kernels for sparse and dense matrix multiplication have already been implemented, my project aims to adapt these existing kernels with HBM and 
extend the design to incorporate a multi-tenancy system. This system allows two users to input their own matrices and perform computation on a new combined 
matrix to test if there is a performance speedup or deficit because of this combination.

The hardware accelerators can benefit from HBM due to the significantly higher data transfer rate over the standard Double Data Rate (DDR) memory onboard 
the FGPA, as well as their ability for parallel memory accessing, meaning multiple memory transactions can occur simultaneously. In the initial phase, we will 
incorporate 16 of the 32 HBM memory channels into our design. Once successful, we intend to include up to 26 of the 32 HBM memory channels as 6 of the 
channels are required for other processes that benefit overall system performance.

Ideally, with the added HBM channels, once we incorporate this design, we hope to increase our performance from 230 MHz to 275-285 MHz, which is almost 
as fast as the FPGA will allow: 300 MHz. This is important as data sets continue to increase in size, and without creating new ways to compute this data, users will 
be forced to wait for much longer times. With the multi-tenancy system and HBM implementation, we hope to optimize performance as much as possible, given 
the hardware specifications, and further enhance the scalability and efficiency of sparse matrix computations on FPGAs.

Multi-tenancy

• Goal is to allow for multiple matrices to be computed at the same time
• Create a diagonal matrix with start of matrix B starting at the bottom right 

adjacent index of matrix A
• Combine test vectors together, created function that only performs matrix 

vector multiplication on each user’s matrix depending on the number of 
columns in each User’s matrix

• Returns both User A and User B results synchronously

What is Multi-tenancy:
The ability for multiple users to use the same device or hardware simultaneously

Future Implementations:

1. Calculate timing for performing matrix computations for each user individually 
and combine to find total time

2. Calculate timing for combine matrix computation
3. Depending on timing, determine if the combined matrix is worth the additional 

hardware resources and utilization based on the following example:

Independent Matrix Timing Analysis:
User A – 5 Seconds
User B – 10 Seconds
Total Time: 15 Seconds

Combined Matrix Timing Analysis – 11 Seconds

User A must wait an additional 6 seconds to receive results of the combined matrix, 
though User B would get their results back 4 seconds earlier as they no longer 
have to wait for User A to finish before they can start their task.

Testing Strategy:

Use scheduling with OpenCL to split the matrix vector computations onto different 
sub-kernels to allow for multiple matrix vector operations to execute at the same 
time, allowing for asynchronous result output for each User.

Requirements:
• Command Queue

This Command Queue keeps track of which user is in line as well as which sub 
kernel is available: SK0, SK1, and SK2.

If successful, the new timing diagram would look like the following:

References 
[1] Abanti Basak, et al. “Analysis and Optimization of the Memory Hierarchy for Graph Processing Workloads.” HPCA 2019
[2] N. Srivastava, et al. “Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise product,” Int’l Symp. on 
Microarchitecture (MICRO), 2020.
[3] Y. Hu, et al. “GraphLily: Accelerating Graph Linear Algebra on HBM-equipped FPGAs” ICCAD 2021
[4] Y. Du, et al. “High-Performance Sparse Linear Algebra on HBM-equipped FPGAs Using HLS: A Case Study on SpMV” FPGA 2022
[5] X. Chen, et al. ThunderGP: Resource-Efficient Graph Processing Framework on FPGAs with HLS, ACM TRETS 2022


